Topic 2 -
Linear first order ODES

A linear first order ODE is an
\nequation of the form
\n
$$
a_1(x)y' + a_0(x)y = g(x)
$$

\nIf we are considering an interval Γ where
\n $a_1(x) \neq 0$ for any x in Γ then we
\n $a_1(x) \neq 0$ for any x in Γ then we
\n $a_1(x) \neq 0$ for any y in Γ then we
\n $g' + a(x)y = b(x)$
\n $y' + a(x)y = \frac{a_0(x)}{a_1(x)}$ and $b(x) = \frac{g(x)}{a_1(x)}$.
\nWhere $a(x) = \frac{a_0(x)}{a_1(x)}$ and $b(x) = \frac{g(x)}{a_1(x)}$.
\nThis is the type of equation that
\nwe will consider the now.

Suppose we have ^a linear first order ODE of the form $\left|\begin{array}{cc}y' + a(x)y = b(x) & (\ast) & \rightarrow \end{array}\right|$ where a(x) and b(x) are $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$ continuous on an open this Let's solve Suppose $\phi(x)$ (\ast) on \pm . $\begin{array}{c} \n\searrow$ $y' + \frac{2xy}{a(x) = 2x} \xrightarrow{6(x) = x} 6(x) = x$
 $y' + \frac{2xy}{a(x) = 2x} \xrightarrow{6(x) = x} 6(x) = x$ That is , suppose we have a
first order ODE of
 $y' + a(x)y = b(x)$
there $a(x)$ and $b(x)$
et's solve this.
et's solve this.
(et's solve this.
(k) on I.
at is all x in I.
(all x in I.
(all x in I.
ivatur of alx) on I. $\frac{15}{10(x)}\frac{6(x)}{6(x)} = 6(x)(x)$ $\frac{Ex:}{2xy = x}$ $2xy = x$ $x = (x) = x$ $x = (x) = x$ $x = x$ $a(x) = 2x$ <u>،</u> That is,
 $\frac{f(x) + a(x) \phi(x)}{f(x) + a(x) \phi(x)}$ $A(x) = x$ derivative (*) on 1.

That is
 $\frac{f(x) + a(x) \phi(x) = b(x)}{b'(x) + a(x) \phi(x) - b(x)}$

for all x in I.

Let A(x) be an unti-

Let A(x) be an unti-

Let A(x) be an unti-

Let A(x) be an unti-Suppose we have
first order ODE
 $y' + a(x)y =$
where $a(x)$ and
continuous on an
Let's solve this
Suppose $\phi(x)$ solv
(k) on I.
That is
That is
 $\phi'(x) + a(x) \phi(x) =$
for all x in I.
Let $A(x)$ be an
Let $A(x)$ be an
Let $A(x)$ be an
Mo Note: A(x) exists by the FTOC
Since a(x) is continuous. (x) be an arrived $f(x)$ be an arrived $f(x)$ be an $f(x)$ on $f(x)$
A(x) exists by the FTOC
a(x) is continuous.

 $A(x)$ to get: Multiply (#*) by c' $A(x)$ $b(x)$ $e^{A(x)}\phi'(x) + a(x)\phi(x) = e$ This gives (by the product rule $(fg)^2 = f'g + g't$) $\begin{bmatrix} 1 & 0 \\ 0 & \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & \end{bmatrix}$ (e $A(x)$ $\left(x \right)$ = e integrate Let $B(x)$ be an anti-deriva side oleniuative
Figd pointed
I .
I . of $e^{A(x)}b(x)$ on f . Let f if rege and only if tive

It

1 both Then ϕ solves (\star) on \pm if $\begin{array}{ccc} \vdots & \vdots & \vdots \end{array}$ $\frac{1}{x}$ $e^{A(x)}\phi(x) = B(x) + C$ where C is some consign constant. ζ o ζ ⁴ selves (*) On) 1
一
工 and only if $- A(x)$ $A(x)$ $+$ $C\overline{e}$ $\phi(x) = B(x)e$

Since all the steps ubove are reversable since $e^{A(x)} \neq 0$ We know we have found the general solution to (*).

$$
\frac{E\times z}{\sqrt{2\pi}} \int_{0}^{1} 1/e^{x} dx = \int_{0}^{1} 1/e^{x} dx
$$
\n
$$
\frac{1}{2} \int_{0}^{1} 1(e^{x}) dx = \int_{0}^{1} 1
$$

$$
2x^{2}y'(x) + 2xe^{x^{2}}y(x) = xe^{x^{2}}
$$

Step 2: Undo the product rule on the left-hand side: $(e^{x}y(x))' = xe^{x^2}$

sides to get: Step 3: Integrate both

 $e^{x} - y(x) = \frac{1}{2}e^{x} + C$ $xe^{2}dx = \frac{1}{2}\int e^{u}du$ $u = x^{2}$
 $u = 2xdx$ = $\frac{1}{2}e^{2} + c$
 $\frac{1}{2}du = xdx$ = $\frac{1}{2}e^{2} + c$

Step 4: $y = \frac{1}{2} + C e^{-x}$ Thus, Constant C $for some$

$$
\frac{Ex: Let's solve}{s_0(x) y} = \frac{sin(x)cos(x)}{b(x)cos(x)}
$$
\n
$$
y' + \frac{cos(x) y}{a(x)cos(x)} = \frac{sin(x)cos(x)}{b(x)cos(x)}
$$
\n
$$
\frac{1}{a(x)cos(x)} = \frac{cos(x)}{b(x)} = \frac{cos(x)}{x}
$$
\n
$$
\frac{3+e^{2} + 1}{2} = \frac{cos(x)}{x} = \frac{sin(x)}{x}
$$
\n
$$
\frac{1}{2} = \frac{cos(x)}{x} = \frac{sin(x)}{x}
$$
\n
$$
\frac{1}{2} = \frac{cos(x)}{x}
$$
\n
$$
\frac{1}{2} = \frac{cos(x)}{x}
$$
\n
$$
\frac{1}{2} = \frac{sin(x)}{x} = \frac{sin(x)}{x}
$$
\n
$$
\frac{sin(x)}{x} = \frac{sin(x)}{x}
$$
\n
$$
\frac{1}{2} = \frac{sin(x)}{x}
$$

Step 3: Integrate both sides. $e^{\sin(x)}y(x) = \sin(x)e^{\sin(x)}e^{\sin(x)} + C$ 4 Sin(x) cus(x) esin(x) dx $=\int t e^{t} dt = \pm e^{t} - \int e^{t} dt$ $\begin{array}{lll}\n\hline\n\text{L} &= \sin(x) \\
\text{d}t &= \cos(x) \, dx \\
\hline\n\text{L} &= \frac{1}{2} \int \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx} \\
\hline\n\text{L} &= \frac{1}{2} \int \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx} \\
\hline\n\text{L} &= \frac{1}{2} \int \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx} = \frac{1}{2} \int \frac{dx}{dx$ $=te^{t}-e^{t}+C$ $= sin(x)e^{sin(x)} - e^{sin(x)} + C$ Step 4: Thus, $-sin(x)$ $= sin(x) - 1 + Ce$ C is some constant. Where

Ex: Consider the equation $xy' + y = 3x^{3} + 1$ $X y'$ $=$ $(0, \infty)$. $J = (0, \infty)$
Since $x \neq 0$ on T we can divide by x to get $3x^{2}+\frac{1}{x}$ $y' + \frac{1}{x}y =$ $x \neq 0$ un T We
 $\frac{1}{x}y = 3x^{2} + \frac{1}{x}$
 $\frac{1}{\omega(x)}$ $\omega(x)$ Step 1: Let $A(x) = ln(x)$. $\frac{4}{a(x)} + \frac{x}{a(x)}$
Step 1: Let $A(x) = ln(x)$.
Then, $A'(x) = \frac{1}{x}$ for all x in F. Then, $A(x) = x$
 $A(x) = e^{\ln(x)} = x$ to get Multiply by ^e $xy' + y = 3x^{3} + 1$ Step 2: Undo the product rule to get $(xy)' = 3x^{3} + 1$

Step 3: Integrate both sides to yet
\n
$$
xy = \int (3x^{3}+1) dx = \frac{3}{4}x^{4}+x + C
$$
\nStep 4: Thus,
\n
$$
y = \frac{3}{4}x^{3}+1+\frac{c}{x}
$$
\nwhere C is a constant.

$$
\frac{S+ep4:}{}^{n} \text{ Thus,}
$$
\n
$$
y = \frac{3}{4} \times \frac{3}{4}l + \frac{c}{x}
$$
\nwhere C is a constant

$$
E \times : Solve
$$
\n
$$
x y' + y = 3 x^{3} + 1
$$
\n
$$
y(1) = 2
$$
\n
$$
00 \quad T = (0,100)
$$
\n
$$
F(s) = above
$$
\n
$$
x = x^{3} + 1 + 2x
$$
\n
$$
y = \frac{3}{4}x^{3} + 1 + 2x
$$
\n
$$
y = \frac{3}{4}x^{3} + 1 + 2x
$$
\n
$$
y = \frac{3}{4}(1)^{3} + 1 + 1
$$

$$
\begin{aligned}\nS_{01} \\
Z &= \frac{7}{4} + C\n\end{aligned}
$$

Thus,

$$
c=\frac{L}{4}
$$

Thus,

$$
y = \frac{3}{4}x^3 + 1 + \frac{c}{x}
$$
.